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The partitioning of the molecular electronic energy into true one-electron 
quantities defined by a molecular electronic virial theorem (MEVT) is studied 
for a number  of  molecules. Since the theorem is derived for exact wavefunc- 
tions, its applicability to various ab initio wavefunctions at different levels of  
accuracy is examined. The average percentage deviations of  the theorem for 
near Hartree-Fock,  double zeta, STO-6G and STO-3G type wave functions 
are 0.4, 1.7, 2.3 and 3.3, respectively. 
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I. Introduction 

A partitioning of molecular energy into various components helps to understand 
various chemical phenomena-like mechanism of chemical bonding [1], molecular 
shape variations upon excitation and ionisation [2] and non-bonded interactions 
[3]. Unfortunately, as the molecular Hamiltonian is composed of both one electron 
and two electron terms and mono- and bicentric terms, a direct partitioning, 
either in terms of electrons or in terms of atomic centres is not evident. Even in 
the conventional independent particle Har t ree-Fock (HF) approximation,  the 
canonical orbital energies are not true "one-electron energies", as their sum does 
not equal the total molecular electronic energy. This has made a large number  
of  attempts to break up the total molecular energy into various components 
necessary so as to serve various purposes. Foremost among these attempts is the 
Ruedenberg method [ 1 ] which was applied to elucidate the mechanism of  chemical 
bonding in H~. This approach involves a number  of theoretical steps in forming 
a chemical bond from separated atoms. Since it is a rather involved approach,  
its extension and interpretation to polyatomic molecules is difficult. A similar 
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approach, modified for left-right correlation was used by Driessler and Kutzelnigg 
[4, 5] to describe bonding. Kollmar [6] developed an ab initio energy partitioning 
scheme in terms of  atomic centers, similar to the one employed in Zero Differential 
Overlap (ZDO) methods [7], and applied it to the study of non-bonded interac- 
tions. Goddard  [8], using the generalised valence bond wave-functions, separated 
the total kinetic and potential energies into classical and exchange parts. He 
concluded that exchange part of the kinetic energy plays the dominant role in 
chemical bonding. Takahata and Parr [9], Coulson and Neilson [10], Davidson 
I l l ] ,  Politzer [12], and Coulson and Deb [13] derived various one-electron 
quantities for use in the construction of the Walsh-Mulliken Diagrams [14]. 
Clementi [15] used "electron-energies" in the study of  Li-(H20)n systems. 

It is desirable that a general partitioning scheme should satisfy the following 
criteria: 

a. Summability, i.e. the sum of the derived one-electron terms should add to give 
the total molecular energy or at least total molecular electronic energy. 
b: These quantities should have a simple and clear physical meaning. 

Each of the schemes discussed above has been devised to suit a particular purpose 
on hand and does not serve as a general partitioning scheme; nor can the 
partitioned quantities be easily assigned a simple physical meaning. We have 
recently proposed a method of  partitioning the electronic energy of a molecule 
[16], based on a molecular electronic virial theorem (MEVT) which divides the 
total molecular electronic energy into truly one-electron components. Though 
derived for exact wavefunctions, the theorem was shown [16] to be numerically 
valid for molecular wavefunctions of near Hartree-Fock quality for simple 
systems. In this paper, we present the results for various diatomic and polyatomic 
molecules, using ab initio wavefunctions of different quality and discuss the 
applicability and numerical validity of  the molecular electronic virial theorem at 
equilibrium and non-equilibrium geometries. 

2. The method 

The molecular electronic virial theorem (MEVT), derived earlier [16], can be 
stated as follows: 

Ee = Z  (f,.) (1) 
i 

(f) =-(t ,)+ w, (2) 

with 

,, - R~ \ 
w, = Z z,~ R~- RL / (3) 

Here E e is the total molecular electronic energy, excluding nuclear repulsion, at 
the given nuclear configuration; t; is the kinetic energy operator for the ith 
electron; W~ is the Hel lmann-Feynman work due to ith electron, R~ is the 



Molecular electronic virial theorem 201 

position vector of a th  nucleus and ri is the position vector of ith electron. The 
expectation values are over the exact wavefunction of the system at any given 
nuclear configuration. 

We have called Eq. (1) as molecular electronic virial theorem (MEVT). This must 
be distinguished from the well-known molecular virial theorem (MVT) of Slater 
[17], which is concerned with the total energy including nuclear repulsions. 

It is easily seen that the terms (f~) satisfy the desirable criteria for a truly 
one-electron quantity. Summability is evident since molecular electronic energy 
is exactly equal to the sum of ~ ) ,  where f~ is a one-electron operator. Also its 
physical meaning is simple. (f~) is equal to the work done by the charge density 
due to the ith electron in bringing the isolated nuclei to the given nuclear 
configuration, less the kinetic energy acquired by the electron in the process. This 
directly corresponds to the gain in the energy of this electron, during molecule 
formation. The relationship of MEVT to the familiar virial theorem can be 
established as follows. MEVT is valid at any nuclear configuration. When we 
consider it at equilibrium geometry we get the following equation: 

r,-Ro\ 
E e ( R ~ q ) : - ~ ( t i ) e ~ + ~ Z ~  R~ R~, /noq" (4) 

By adding the internuclear repulsion energy V"", which is constant at a given 
geometry, to both sides of Eq. (4), we get 

Ee(Ueq)+ V'~n(eeq)=-E (ti>Req-[-~i ~ " R'~--"~5-'-R,~i /R.q q- vnn(Ueq)" (5)  

At the equilibrium geometry nuclear repulsions are exactly balanced by the 
attractive forces. Thus, the second and third terms on rhs of Eq. (5) cancel each 
other and leave us with 

E~(Req) + Vn"(R~q) = - •  (t,)Roq (6) 
i 

o r  

E t~  - T  

which is the molecular virial theorem at equilibrium geometry. Similarly the 
molecular virial theorem at nonequilibrium geometry can be shown to be related 
to MEVT, at a given nuclear configuration by assuming nuclear wavefunctions 
to be &functions. 

3. Numerical method 

In this section, we briefly discuss the numerical procedure employed to evaluate 
the one-electron quantity (f~) of Eq. (2). The evaluation of expectation values 

1 
(ti) is straightforward [18]. The values of W~ are evaluated using the following 
integral transformation similar to the one used in molecular calculations for the 
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nuclear-electron attraction operator  Vin [18], 
o 

RI" - ~ /  ds  s (~/2)-1 e -'R~ �9 (7) 

The form of  the t ransformed operator  suggests that it would be more tractable 
in a Gaussian-type orbital (GTO) basis rather than in a Slater-type orbital (STO) 
basis. The advantage is that, since closed form expressions are available for 
integrals over Gaussian function products, we can combine the e -sR2 part  of  the 
operator  with basis orbitals and obtain a polynomial  in the variable s alone, 
which can then be numerically integrated using standard techniques. 

Thus we may write Eq. (3) in detail as: 

where ~F is a molecular orbital written in the LCAO form, 

ap = ~ CkCk, (9) 
k 

Ck being the basis functions. Since we take &'s as GTO's ,  we can write 

(b = f ( X a ,  YA, ZA) e--C'r~ (10) 

with f = 1 for s-type function and f = xA for px-type function. Here x,~ --- x - A~ ; 
similarly for YA and ZA ; r~ = X A2 + Y A2 + Z2A. Ax,  Ay,  A z  are the Cartesian coordinates 
of  the atomic centre A, on which ~b is based. 

The product  of  two Gaussian functions is another Gaussian, with its center 
between the centers of  original Gaussians. Thus, we can write the product of  ~bk 
and r on centers A and B respectively as a Gaussian on center C as 

q~ Cm = (b'~ ( b B = fk (XA,  YA, ZA) f ( X B ,  YB, ZB) e - ~ k 4  e ~"~. (11) 

This can be condensed to 

ck c = f , , ( x c ,  Yc,  z c )  e -(~k+%)~. (12) 

Substituting for �9 in Eq. (8) using Eqs. (9), (10) and (12), we have, 

~k ~l CkCt fsr=~176 
w , -  , a s  

Ix ,y,z=~176 X (XO~ x + yOty + ZOz z -- 2 2 9 o ~  - a r - a ' i ) f ( x c ,  Yc,  z c  ) ,y,z~--cx3 
• e - ( ' ~ + % ) ~  e -~RL d x  dy  dz. (13) 

Putting 

e-(C~k +al)rec e-SR2,~ = e-I 3R2 
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We can write the integral part in Eq. (13) as 

s d s  (xa~ + y O t y  + ZOt z - -  Ot x - -  Oly -- 
s ~ 0  o x , y , z  ~ - - o o  

�9 f (xc ,  Yo Zc) e -~R2 dx dy dz. (14) 

This can be simplified further to facilitate integration over x, y, z as 

f s=o~ s d s ( X +  Y + Z +  K)  (15) 
$ = 0  

where 

f x,y,z=+oo 
X = f(xc,  Yc, zc)xa,, e --~R2 dx ely dz (16) 

., x,y,z=--o~ 

and similar expressions for Y and Z. K is given by 

K = - f  2 (Olxq_ 2 2 a y +  az) e-~e2 f(xc,  Yc, zc )  dx dy dz. (17) 

The integrals X, Y, Z and K are simple integrals over Gaussians and can be 
analytically evaluated. Thus, we are left with a single numerical integration over 
s. We have used Gaussian Quadrature for this final numerical integration. The 
fact that the accuracy of  the present method is comparable to those usually 
employed in molecular calculations is evident from the results o f  the test calcula- 
tions performed on the electric field components  of  some molecules  for which 
reported values are available [19]. These are shown in Table 1. 

Table 1. Electric Field Values using the present integra- 
tion method 

Present 
Molecule calculation SB a 

BH 3 H(x) 0.0304 0.0307 
H(y) 0.0000 0.0000 
H(z) -0.0537 -0.0531 

CH4 H(x) 0.0367 0.0372 
H(y) 0.0367 0.0372 
H(z) 0.0367 0.0372 

H20 O(z) -0.2525 -0.2482 
H(y) 0.0996 0.1010 
H(z) 0.0385 0.0372 

BF B(z) -0.1302 -0.1306 
F(z) 0.2714 0.2662 

CO C(z) -0.1889 -0.1871 
O(z) 0.3007 0.2907 

N 2 N(z) -0.2174 -0.2489 

a Reference values are from Ref. [19]. 
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4. R e s u l t s  and d i s c u s s i o n  

4.1. Basis set dependence 

In the present work Gaussian type wavefunctions have been used, considering 
the computational advantages discussed earlier. We have used basis sets of  varying 
size and accuracy to check the dependence of  MEVT on the quality of the 
wavefunctions. Since we have already established [16] that MEVT is, in theory, 
valid for fully variational functions, the present work is restricted to basis sets 
of  double zeta (DZ) quality and minimal (STO-NG type) basis sets. DZ functions 
used in this work have been obtained from the compendium of Snyder and Basch 
[19]. These wavefunctions have been used by a large number of workers for a 
variety of  calculations [20] and thus form a set of reference wavefunctions. 

In addition to DZ functions, we have used the minimal STO-3G and STO-6G 
wavefunctions obtained from the GAUSSIAN-70 program [21]. For comparing 
the effect of  the quality of  wavefunctions on MEVT, deviations from MEVT, 
defined as / 

m = E e - ~ , < f )  (18) 
i 

are listed for some molecules calculated with various wavefunctions in Table 2. 
The percentage deviations, defined as (A/E  e) x 100, are also listed in this Table. 
It is evident that there is a trend in these deviations. The average percentage 
deviations are least in the case of  Hartree-Fock wavefunctions (0.39), higher for 
DZ (1.66) and STO-6G (2.38) functions and maximum (3.28) for STO-3G func- 
tions. This obviously is in accordance with the order of the quality of the 
wavefunctions. Another important point is the following: These deviations are 
small (<  1%) for some molecules (e.g. H20, HF) while they are significantly large 
( - 5 % )  for some others, regardless of the quality of the wavefunctions, except 
in the Hartree-Fock case. We will return to investigate the reasons for this in the 
next section. 

4.2. M E V T  at the equilibrium geometry 

The sum of the expectation values W, of  the operator W~ is presented in Table 
3 along with the corresponding total kinetic energy (T) and the total electronic 

Table 2. A, deviations from MEVT for various wavefunctions. Percentage error is given in parentheses 

Molecule HF DZ STO-6G STO-3G 

H20 0.30 (0.35) 0.40 (0.47) 0.04 (0.05) 0.60 (0.71) 
CO 0.70 (0.52) 3.63 (2.68) 6.40 (4.74) 7.26 (5.38) 
HCHO 0.81 (0.55) 3.12 (2.17) 3.54(2.45) 3.69 (2.57) 
Li CN -0.20 (0.15) - -  2.95 (2.32) 3.74 (2.97) 
HCN --  2.25 (1.92) 2.63 (2.26) 3.46 (2.99) 
BF --  3.09 (2.16) 6.30 (4.42) 7.19 (5.09) 
HF --  0.44 (0.42) 0.15 (0.14) - -  
Average (0.39) (1.66) (2.38) (3.28) 
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Table 3. MEVT at equilibrium geometry, with DZ wavefunctions (Ref. [19]). All values in atomic units 

~a 

Molecule T - W V ~n - f  - E  e abs. % F b 

BH3 26.3384 7 .0180 7 .4030  33.3564 33.7770 0.42 1.24 0.1607 
CH4 40.1718 12.8591 13.3918 53.0309 53.5741 0.54 1.00 0.1933 
NH 3 56.1572 11.2763 11.9356 67.4335 68.1050 0.67 0.98 1.4653 
H20 76.0787 8 .7186 9 .1950  84.7973 85.1985 0.40 0.47 2.2008 
HF 99.9681 4 .7965 5 . t 9 3 3  104.7646 105.2083 0.44 0.42 2.3083 
BF 124.1264 15.6744 18.8242 139.8008 142.8962 3.09 2.16 3.0488 
CO 112.6576 18.9047 22.5141 131.5623 135.1904 3.63 2.68 3.4482 
N 2 108.7360 20.0267 23.6247 128.7627 132.4942 3.73 2.81 3.4846 
HCN 92.6966 21.7741 23.8928 114.4707 116.7214 2.25 1.93 1.8000 
C2H2 76.5847 24.1162 24.7917 100.7009 101.5835 0.88 0.87 0.4036 
HCHO 113.8195 28.0760 31.1681 141.8955 144.9890 3.09 2.13 2.5750 
CzH4 77.9411 32.5871 33.2665 110.5282 111.2719 0.74 0.66 0.2556 
BzH6 52.7067 29.9152 31.7461 82.6219 84.5736 1.95 2.30 0.8759 
C~H~ 79.1522 40.9748 41.93t0 120.1271 121.t291 1.00 0.82 0.3711 
N2H4 111.1361 38,5154 40.7611 149.6515 151.8872 2.24 1.47 2.8855 
H202 150,9020 33.1560 36.7588 184.0581 187.4960 3.44 1.83 4.0750 
Fz 198.3950 26.1715 30.2239 224.5665 228.9170 4.35 1.90 3.1392 
CH3F 138.9942 34.1262 37.2542 173.1204 176.2795 3.16 1.79 2.4944 

Average 1.53 

a Deviation from MEVT (see text), b Residual force (see text). 

energy ( E  e) for DZ wavefunct ions  for a n u m b e r  of molecules at the equi l ibr ium 

geometry. The value of W (co lumn 3) should be equal to the negative of the 
in te rnuc lear  repuls ion energy V"" (co lumn 4) at the equi l ib r ium geometry;  or, 

according to Eq. 1, the sum f =  Y~ ( f )  ( co lumn 5) should be equal to the electronic 
energy E e (co lumn 6). It is seen from Table  3 that the percentage deviat ion for 
DZ wavefunct ions  varies from 0.42 in the case of H F  to a m a x i m u m  of  2.81 for 
N2. The average percentage deviat ion for this set of  molecules is 1.53. 

Similar  results as in  Table  3 are given for STO-6G funct ions  at the equi l ibr ium 
geometry,  in Table 4. We note  that  in this case also the deviat ions are quite small 
for some molecules (e.g. for C2 the percentage deviat ion is 0.4). The average 
devia t ion for this set of  molecules  is 2.32, which is higher than  the cor responding  
value for the DZ case. 

Cons ider ing  the Har t r ee -Fock  funct ions  as t h e  reference, for which MEVT 
deviat ions are the m i n i m u m ,  we can identify the fol lowing sources of error for 
results at the equi l ib r ium geometry: 

1. Incomple te  geometry opt imisat ion,  
2. inaccurate  numer ica l  procedure  and,  
3. poor  qual i ty of the wavefunct ions.  

Among  these the first two contr ibute  only a little as the fol lowing arguments  
show. Virial theorem is fairly well satisfied with the devia t ion of ( V / T )  from 
- 2 . 0  be ing approximate ly  the same (<10  -3 ) for all these molecules for all the 
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Table 4. MEVT for STO-6G wavefunctions at equilibrium geometry. All values are in atomic units 

~a 

Molecule T - W V ~n - f  - E  e abs. % F b 

Li 2 15.1692 2.5080 1.7960 17.6772 16.5905 1.08 6.51 0.2364 
BF 26.1902 2.0499 2.2065 28,2401 27.2082 1.03 3.78 0.8255 
BH2 26.3170 4 .5302  4 .6375  30.8472 30.3010 0.54 1.78 1.9620 
CH2 39.2634 5 .9327  6 .1517  45.1961 44.9648 0.23 0.51 1.5031 
NH2 55.6079 7.2535 7.5648 62.8614 62.9343 0.07 0.11 2.0101 
B a 51.5098 3 .3484  4 .4020  54.8582 53.0840 1.77 3.33 0.3812 
H20 75.9392 8 .9394  9 .2400  84.8786 84.9160 0.04 0.05 2.5200 
HF 99.5119 5 .0310  5 .1935 104.5429 104.6934 0.15 0.14 1,9370 
C 2 76.9108 6 .3929  8 .1129  83.3037 82.9693 0.33 0.40 0.5944 
LiF 106.3294 6 .8539  9 .1364  113.1833 115.5095 2.32 2.00 1.8783 
CO 110.3132 16.1616 22.5140 126.4748 132.8748 6.40 4.81 3.6348 
BF 124.0920 11.9600 18.8241 136.0520 142.3510 6.30 4.42 3.3770 

Average 2.32 

a Deviation from MEVT (see text). 
b Residual force (see text). 

wavefunct ions .  Also, since the quadra ture  procedure  used is the same for all the 
molecules,  the numer ica l  errors are near ly the same. In  addi t ion  to these argu- 
ments,  the reason for the observed large deviat ions for some molecules  will 
become apparen t  if we look at the in t ra -molecular  forces as computed  from these 
wavefunct ions .  The total residual  force in a molecule  F, is given by 

a t o m s  

F =  • F~ (19) 
ct 

where F~ is no rm of the force on the a t h  nucleus.  F values are given along with 
E e and  A values in Tables 3 and  4. We recall that deviat ions from MEVT given 
by A are large for some molecules  like CO, BF and  F2. The residual  forces F are 
also found  to be significantly large for these molecules.  This is especially true 
for molecules  con ta in ing  comparat ively  heavier  atoms like O and  F. Even though 

the electric fields on these atoms are of s imilar  magn i tude  to those on other 
atoms, forces are much  higher due to their large nuc lear  charge compared  to the 
smaller  atoms like H and  B. 

Ideally,  these forces should  be zero at the equ i l ib r ium geometry in order  to obey 
the H e l l m a n n - F e y n m a n  theorem. However,  such a s i tuat ion is ob ta ined  only for 
exact wavefunct ions  and  floating or stable [22,23] wavefunct ions .  Thus for 
practical wavefunct ions ,  we have a non-zero  net force. Since, in apply ing  MEVT, 
the energy term is computed  via force, it follows that greater the residual  force 
in a molecule ,  greater will be the devia t ion from MEVT. This is evident  from 
Fig. 1, where we observe that the devia t ion from MEVT, A, has a fair correlat ion 
with the residual  force F, us ing DZ wavefunct ions .  Thus,  we conc lude  that the 
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Fig. 1. Correlation between residual forces on nuclei and deviation from molecular electronic virial 
theorem. 

inadequate quality of  the wavefunctions is the major contributor to the observed 
deviations from MEVT. 

4.3. M E V T  at non-equilibrium geometries 

As noted in Sect. 2, MEVT is valid, in principle, at all geometries. Computat ions 
were performed to verify MEVT at non-equilibrium geometries for various 
molecules using STO-6G basis. These results are given in Table 5. For diatomic 
molecules, two additional bond lengths, one on either side of  the equilibrium 
value, are considered. For triatomic molecules, the bond angle is varied between 
90 ~ and 180 ~ Mostly, the molecules whose wavefunctions are good enough to 
satisfy MEVT at the equilibrium geometry are chosen for this study. A few 
calculations were made for the unsatisfactory cases also. For the molecules tested, 
it is found that MEVT is valid at non-equilibrium geometries to approximately 
the same degree as in the equilibrium case. For the molecules listed in Table 5, 
the average percentage deviation from MEVT is 1.95. 

Table 5. MEVT at non-equilibrium geometries. All values are in atomic units 

A ~ 
Bond length/  

Molecule Bond angle T -- W - f  - E  e abs. % 

Li 2 4.00 15.2175 2.5278 17.7453 17.0406 0.70 4.13 
5.01 a 15.1692 2.5080 17.6772 16.5905 1.08 6.55 
6.00 15.0134 2.2857 17.2990 16.3016 0.99 6.11 

HF 1.51 99.7489 5.4300 104.8902 105.4133 0.52 0.49 
1.73 a 99.5119 5.0310 104.5429 104.6934 0.15 0.14 
2.27 99.3412 4.0980 103.4392 103.4209 0.02 0.02 

BH 1.80 26.2920 2.1105 28.4025 27.7287 0.67 2.43 
2.26 a 26.1902 2.0499 28.2401 27.2082 1.03 3.79 
3.40 26.1832 1.6169 27.8001 26.3760 1.42 5.38 
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A c 

Bond length/  
Molecule Bond angle T - W - f  - E  e abs. % 

BH 2 1.51 27.1566 4.8504 32.0069 32.3504 0.34 1.06 
2.27 26.3170 4.5302 30.8472 30.3010 0.55 1.80 
2.83 26.2217 4.0548 30.2765 29.2890 0.99 3.37 

CH 2 1.51 39.8591 6.3459 46.1850 46.8851 0.70 1.49 
2.04 39.2634 5.9327 45.1961 44.9648 0.23 0.51 
2.83 39.1265 4.8635 43.9900 43.0689 0.92 2.13 

NH 2 1.51 56.1228 7.9124 64.0352 64.8639 0.83 1.28 
1.93 a 55.6079 7.2535 62.8614 62.9344 0.07 0.11 
2.83 55.5814 5.4253 61.0067 60.3505 0.66 1.09 

H20 1.32 76.9028 10.1433 87.0461 87.9133 0.86 0.98 
1.81 a 75.9392 8.9394 84.8786 84.9160 0.04 0.05 
2.26 75.5834 7.5921 83.1755 82.9435 0.23 0.27 

CO 1.89 110.835 17.8580 128.6930 136.5436 7.85 5.75 
2.13 a 110.3132 16.1616 126.4750 133.7380 7.26 5.43 
2.50 110.2763 13.3880 123.6630 130.3619 6.69 5.13 

BF 1.89 124.4192 16.0618 140.5536 147.2093 6.65 4.51 
2.39 124.092 11.9600 136.0520 142.3511 6.30 4.42 
2.83 124.2320 9.4400 133.6700 139.3493 5.68 4.07 

BH2 b 90 26.3737 4.5649 30.9386 30.3405 0.59 1.94 
130 a 26.371 4.5305 30.8476 30.3010 0.55 1.81 
150 26.3216 4.5413 30.8629 30.2751 0.59 1.95 
180 26.3055 4.5677 30.8732 30.2519 0.62 2.05 

CH2 b 90 39.2733 5.9624 45.2357 45.0173 0.22 0.49 
120 39.2395 5.9445 45.1840 44.9898 0.22 0.49 
140 a 39.2634 5.9334 45.1968 44.9648 0.23 0.51 
180 39.2816 5.9606 45.2422 44.9300 0.31 0.69 

NH2 b 90 55.6210 7.2130 62.8340 62.9644 0.13 0.21 
103 a 55.6079 7.2535 62.8614 62.9343 0.07 0.11 
150 55.5788 7.3668 62.9456 62.8090 0.13 0.21 
180 55.5597 7.3699 62.9297 62.7693 0.16 0.25 

H20 b 90 75.9536 8.8889 84.8425 84.8833 0.04 0.05 
105 a 75.9316 8.8979 84.8295 84.8429 0.01 0.01 
120 75.9264 8.9212 84.8476 84.8026 0.04 0.05 
180 75.9947 9.088 85.0827 84.6624 0.42 0.49 

Average 1.95 

Equilibrium bond length /bond angle. 
b Equilibrium bond length for bond angle variation. 
c Deviation from MEVT (see text). 

I t  is  i n t e r e s t i n g  t o  n o t e  t h a t  f o r  B F  a n d  C O ,  w h i c h  h a v e  l a r g e  A v a l u e s  a t  

e q u i l i b r i u m ,  t h e  A v a l u e  r e m a i n s  a p p r o x i m a t e l y  t h e  s a m e  a t  o t h e r  g e o m e t r i e s  

a l s o .  T h i s  i s  a n o t h e r  e v i d e n c e  t o  s h o w  t h a t  t h e  l a r g e  d e v i a t i o n s  f r o m  M E V T  f o r  

t h e s e  c a s e s  i s  m a i n l y  d u e  t o  t h e  p o o r  q u a l i t y  o f  t h e  w a v e f u n c t i o n s .  
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The  va l id i ty  o f  M E V T  at n o n - e q u i l i b r i u m  geomet r ies  is o f  g rea t  in te res t  as we 
can  use  f ,  a o n e - e l e c t r o n  t e rm  wi th  a c lear  phys i ca l  m e a n i n g  as the  p a r t i t i o n e d  

quan t i t y ,  for  e x a m p l e ,  to d i scuss  the  n a t u r e  o f  m o l e c u l a r  b o n d i n g  or  as a poss ib l e  
o r d i n a t e  in  W a l s h  type  d iag rams .  M o r e  s tud ies  in  this d i r ec t i on  are in  progress .  

5. Conclusions 

In  this  work ,  we have  s t u d i e d  a m e t h o d  p rev ious ly  p r o p o s e d  to u n a m b i g u o u s l y  
pa r t i t i on  the  to ta l  m o l e c u l a r  e lec t ron ic  ene rgy  in to  i n d i v i d u a l  m o l e c u l a r  o rb i ta l  
c o n t r i b u t i o n s  in  p o l y a t o m i c  molecu les .  The  va l id i ty  of  the  m o l e c u l a r  e lec t ron ic  
vi r ia l  t h e o r e m  ( M E V T )  w h i c h  def ines  these  quan t i t i e s  is e x a m i n e d  for w a v e f u n c -  
t ions  o f  d i f ferent  size a n d  qual i ty .  The  average  p e r c e n t a g e  d e v i a t i o n s  f rom the  
t h e o r e m  for  the  sets o f  mo l e cu l e s  s t u d i e d  u s ing  H a r t r e e - F o c k ,  d o u b l e  zeta,  
S T O - 6 G  a n d  S T O - 3 G  w a v e f u n c t i o n s  are 0.39, 1.66, 2.32 a n d  3.28 respect ively .  
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